pH-dependent optical properties of synthetic fluorescent imidazoles.

نویسندگان

  • Mikhail Y Berezin
  • Jeff Kao
  • Samuel Achilefu
چکیده

An imidazole moiety is often found as an integral part of fluorophores in a variety of fluorescent proteins and many such proteins display pH-dependent light emission. In contrast, synthetic fluorescent compounds with incorporated imidazoles are rare and have not been studied as pH probes. In this report, the richness of imidazole optical properties, including pH sensitivity, was demonstrated by means of a novel imidazole-based fluorophore 1H-imidazol-5-yl-vinylbenz[e]indolium. Three species corresponding to protonated, neutral, and deprotonated imidazoles were identified in the broad range of pH 1-12. The absorption and emission bands of each species were assigned by comparative spectral analysis with synthesized mono- and di-N-methylated fluorescent imidazole analogues. pK(a) analysis in the ground and the excited states showed photoacidic properties of the fluorescent imidazoles due to the excited state proton transfer (ESPT). This effect was negligible for substituted imidazoles. The assessment of a pH-sensitive center in the imidazole ring revealed the switching of the pH-sensitive centers from 1-N in the ground state to 3-N in the excited state. The effect was attributed to the unique kind of the excited state charge transfer (ESCT) resulting in a positive charge swapping between two nitrogens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, Synthesis and Applications of Fluorescent and Electrochemical Probes

................................................................................................................... 46 Introduction .............................................................................................................. 47 5 Experimental section ................................................................................................ 49 2.3.1 Materials ...............

متن کامل

Synthesis and Optical Study of CdZnTe Quantum Dots

The comparison of growth processes and fluorescent properties of CdZnTe semiconductor quantum dots that are synthesized in different concentrations of Zn2+ in water are discussed in this paper. The samples are characterized through absorbtion (UV) and photoluminescence spectra (PL). The results show that when the reaction time is prolonged, the absorption peak and fluorescent emission peak pres...

متن کامل

Synthesis and Optical Study of CdZnTe Quantum Dots

The comparison of growth processes and fluorescent properties of CdZnTe semiconductor quantum dots that are synthesized in different concentrations of Zn2+ in water are discussed in this paper. The samples are characterized through absorbtion (UV) and photoluminescence spectra (PL). The results show that when the reaction time is prolonged, the absorption peak and fluorescent emission peak pres...

متن کامل

Spectral and redox properties of the GFP synthetic chromophores as a function of pH in buffered media.

The effect of pH on the spectral and redox properties of model GFP synthetic chromophores (Cros) in a universal buffer system was investigated. The Cro hydroxy-derivatives demonstrated a Nernst-type electrochemical dependence of the anodic potential within the pH 2-8 range. Analogous studies on various fluorescent proteins were unsuccessful.

متن کامل

Imidazole as a parent π-conjugated backbone in charge-transfer chromophores

Research activities in the field of imidazole-derived push-pull systems featuring intramolecular charge transfer (ICT) are reviewed. Design, synthetic pathways, linear and nonlinear optical properties, electrochemistry, structure-property relationships, and the prospective application of such D-π-A organic materials are described. This review focuses on Y-shaped imidazoles, bi- and diimidazoles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 15 14  شماره 

صفحات  -

تاریخ انتشار 2009